If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-20p+99=0
a = 1; b = -20; c = +99;
Δ = b2-4ac
Δ = -202-4·1·99
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2}{2*1}=\frac{18}{2} =9 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2}{2*1}=\frac{22}{2} =11 $
| 9x=3 | | 3(4x+2)-10x=8 | | 2p+8=9 | | 3+7f=38 | | 9(w-2)=5w | | (5x-20)(x+11)=0 | | 1.3c+2.5=64 | | 34-3g=61 | | 10+7c=52 | | (4+x)x5=14 | | 6^2^x=800 | | 6^2@x=800 | | √2x+x=0 | | x/1.8=6.5 | | (4+x)x5=30 | | 1+23x=7x/3 | | (-4)/(-4)x=16/(-4) | | 7/9+n=11/6 | | u-1=5 | | f(7)=9 | | m-85/6=101/8 | | 1/x-1-1/x+2=1/4 | | -z=-39 | | 7=w+4 | | R=6/7(6+q) | | x+2/x^2-25+1=8x/2x-10 | | 7(x-2)=4x+4 | | -6x-3+3=13+3+2x | | 1/3−2b=3 | | 8.25y=-140.25 | | 6x+7=-12-7x | | 58=x(62) |